Second generation HIV surveillance: Better data for decision making

Prof Thomas M Rehle, MD, PhD Human Sciences Research Council, South Africa

HAI Conference on Prevention and Control of the HIV Epidemic in Botswana

Gaborone, June 12-15, 2008

If it was so easy...

Relationship between incidence, prevalence, and mortality

Source: FHI Evaluation Handbook 2001

Basic reproductive rate R_o of HIV infection

C: Number of exposures of susceptible persons to infected persons per unit time

β: Efficiency of transmission per contact

D: Duration of infectious period

HIV incidence and prevalence

Factors potentially facilitating HIV spread

Factors potentially reducing HIV spread

Data for Improved Analysis and Decision Making

Socio-demographic Data

- morbidity & mortality
- •fertility
- •male circumcision
- •migration patterns

Biologic Data

- •HIV
- •AIDS
- •STD
- •Hepatitis B, C
- •TB

Behavioral Data

- •general population
- •sub-populations at higher risk
- young people

Analysis of HIV/AIDS epidemic
Design of Interventions
Evaluation of Program Effects
Policy Analysis
Resource Allocation

Evaluation

"Effectiveness evaluation"

Thomas Rehle et al.

Fig. 2. Framework of monitoring and evaluation efforts

Monitoring "Process evaluation"

Inputs	Outputs	Outcomes	Impact
 Resources Staff Funds Materials Facilities Supplies Training 	 Condom availability Trained staff Quality of services Knowledge of HIV transmission 	 Behaviour change^a Attitude change^a Changes in STI trends^a Increase in social support Reduced stigma and discrimination 	Changes in: HIV/AIDS trends ^a AIDS-related mortality ^a Social norms Coping capacities in communities Economic impact
			_

Levels of evaluation efforts

Information provided by second-generation HIV surveillance systems.

Critical Questions

Are the observed changes in HIV trends:

- 1. a reflection of the natural history of the epidemic?
- 2. a product of changes in behavior?
- 3. a product of interventions?

Factors Contributing to Observed Changes in HIV Prevalence

- Mortality, especially in mature epidemics
- Decrease in new HIV infections as a result of behavior change:
 - Effect of interventions
 - Spontaneous (e.g. close friend with HIV/AIDS)
- Population differentials related to in- and out migration patterns
- Sampling bias and/or errors in data collection

Expected increase in HIV Prevalence due to:

 Decrease in deaths in HIV infected persons as a result of antiretroviral therapy (ART)

Estimating national HIV incidence

- Epidemiological methods
 - Cohort studies (directly observed incidence)
 - HIV prevalence in youngest age group (as a proxy for recent infection)
 - Mathematical modeling (indirect incidence estimate)
- Laboratory- based methods

 (direct incidence measure from cross-sectional surveys)

Detection of early HIV infection

Time

Limitations of existing assays

- Some overestimate HIV incidence due to misclassification of long-term infections as recent
- Some remain to be evaluated in larger samples with diverse HIV-1 subtypes
- Some have no HIV incidence formulas established
- In-house assays may not be reproducible

Adjusting HIV incidence estimates

Case-based surveillance

- using HIV-testing and ART history
- Not feasible in many resource-poor settings

■ Formula-based adjustments

 More data needed to account for ARTrelated misclassification and appropriate adjustments

Laboratory based adjustment

Sequential testing algorithm (not yet validated)

Schematic of the BED-CEIA

BED window periods at 0.8 cutoff

AD

B

B

C

C

Ε

Kenya

Amsterdam

Thailand

Zimbabwe

Ethiopia

Thailand

171 (150-199)

127 (113-152)

143 (118-170)

181 (165-198)

167 (154-180)

115 (106-125)

BED OD values over time in seroconverter panels

BED incidence adjustments

- BED validation meeting, CDC 2006:
 - Sensitivity/Specificity Adjustment (McDougal et al.)
 - Specificity Adjustment (Hargrove et al.)
 - Validated for HIV-1 subtypes B and C
 (2 532 specimens from 1 192 individuals)

National HIV Household Survey South Africa 2005

- First national survey with HIV incidence testing
- Study population: 2 years and older
- Anonymous HIV testing of dried blood spot specimens
- Final sample: 23 275 interviewed, 15 851 tested for HIV

BED HIV incidence calculation

$$I = \frac{F (365/w) N_{inc}}{N_{neg} + F (365/w) N_{inc}/2} \times 100$$

$$(R/P) + \gamma - 1$$
Adjustment Factor =
$$(R/P) (\alpha - \beta + 2\gamma - 1)$$

$$(R/P) (\alpha - \beta + 2\gamma - 1)$$

Window period = 180 days

Incidence = number of new infections per year per 100 persons at risk (% / year)

HIV incidence % and number of new infections by age group, South Africa 2005

Age group (years)	Weighted sample (n)	HIV incidence % per year [95%CI]	Estimated number of new infections per year (n)
≥ 2	44 513 000	1.4 [1.0 - 1.8]	571 000
2-14	13 253 000	0.5 [0.0 - 1.2]	69 000
15-24	9 616 000	2.2 [1.3 - 3.1]	192 000
15-49	24 572 000	2.4 [1.7 – 3.2]	500 000

HIV prevalence and HIV incidence by age and sex, South Africa 2005

Rehle et al. SAMJ 2007; 97: 194-199

Are the adjusted BED HIV incidence estimates plausible?

BED HIV incidence vs ASSA model (estimates for 2005)

BED HIV incidence vs ASSA model: male and female youth 15-24 years

HIV prevalence in youth by single year of age HSRC 2005

HIV incidence and behaviour HSRC 2005 (age group 15 – 49 years)

Variable	HIV incidence (% per year)
Marital status Single Married Widowed	3.0 1.3 5.8
Sexual history Sexually active in the past 12 months Current pregnancy	2.4 5.2
Condom use at last sex (15-24 yrs) Yes No	2.9 6.1

Conclusion

- Incidence measures are generally better than prevalence measures for assessing current HIV-transmission dynamics and the impact of HIV prevention programs
- Laboratory-based HIV incidence estimation from representative cross-sectional surveys is method of choice for national HIV incidence surveillance
- Assay-based HIV incidence analysis needs to account for ART-related misclassification