Chamging lives of ordinary people throngit buman and social sclences

Perspectives on improving education in SA; Education Summit of the Department of Basic Education

16 \& 17 April 2013, Pretoria
(Based on version prepared by CH Prinsloo \& S Rogers for North-West Province Education Indaba; presented on behalf of TIMSS National Research Coordinator and team by CH Prinsloo)

Highlights from TIIMSS 20II: South Africa

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY (TIMSS 2011)

- TIMSS is an opportunity to assess and benchmark South African mathematics and science performance in an international study. TIMSS has been conducted every four years since 1995. In TIMSS 2011, 45 countries participated at the grade $8 / 9$ level.
- It is important to measure learner achievement through national, regional and international measures. These studies provide information about the well being of our educational system; so that we could better manage and improve our systems.
- In August 2011, the HSRC administered the TIMSS 2011 mathematics and science instruments in 285 schools to 11969 Grade 9 learners.
- We conducted previous TIMSS in 1995, 1999 and 2002 and have comparable data to monitor system-level trends in a global context.

Today's Presentation

- Very brief key findings from TIMSS 2011 data
- Placing provincial achievement in national context
- Selected interesting observations
- Implications for Education in South Africa
(Presentation of Feb '13 to National DBE HEDCOM meeting refers, and is not cited in detail. It covered:
i. methodology, trends in achievement since 1995, comparison between TIMSS 2002 \& 2011, curriculum coverage, school \& home resources, teacher \& classroom resources, language \& achievement, attitudes)

Trends: TIMSS 1995 to 2011

- The TIMSS achievement scale has a centre point of 500 and a standard deviation of 100 which were metrics established in 1995 (first cycle of TIMSS).
- It is scaled to remain constant so that comparisons can be made between countries and across years.
- Data from the previous cycle and data from successive cycles are scaled using a process called concurrent calibration.
- Hence placing all data on the same scale for comparability.

Key messages from TIMSS 2011

- South African mathematics and science national average scores, although still low, has improved from 2002.
- The difference between the highest and lowest scores in 2002 to 2011 has decreased.
- The greatest improvements in scores is observed at the lowest end, from the lowest performing schools and provinces, and in schools formerly designated for Africans.
- The top end has not shown any major improvements and the former House of Assembly/ Model C and Independent schools perform at similar levels, but lower than the middle (Centrepoint) score.

- For mathematics, Asian countries - Korea, Singapore, Chinese Taipei, Hong Kong and Japan - are top performers.
- South Africa, Botswana and Honduras conducted the study at Grade 9 level.
- South African performance is still at the low end, but has improved since 2002. In 2002 South Africa scored 285 points at the grade 9 level. In 2011 the score was 352.
- The top South African performers approached the average performance of the top performing countries.

Provincial comparison (Maths; 2002 to 2011)

Country as a whole: 285 to 348

Lowest Provinces: EC 250 to 316 LP 244 to 322
Highest Provinces: WC 414 to 404
GP 303 to 389

Change in achievement by province between 2002 to 2011

Performance at scores above 400: access to S\&T careers and indicator of quality

	Advanced Benchmark $(\%)$ >625	High Benchmark $(\%)$ >550	Intermediate Benchmark (\%) 475	Low Benchmark $(\%)$ >400	Less than 400
points					

Performance at scores above 400: access to S\&T careers and indicator of quality

$\left.$| | Advanced
 Benchmark
 $(\%)$ | High
 >625 | Benchmark
 $(\%)$
 >550 | Intermediate
 Benchmark (\%)
 475 | Low
 Benchmark
 $(\%)$
 >400 |
| :--- | :---: | :---: | :---: | :---: | :---: | | Less than |
| :---: |
| 400 |
| points | \right\rvert\,

6. Future............?

- Participation in TIMSS 2015.
- Work towards improvement of both lower and top end of performance.
- With the effort and commitment of schools, teachers and learners and support from the educational departments we should set the target for an improvement by 30 points to reach a score of 382 in $2015 \& 40 \%$ of learners score above 400 points.

Projected scores

YEAR	Grade 9				
	Mathematics scores	$	$	2023	442
:---	:---				
2019	382				
2015	285				
2011	296 (extrapolated)				
2002	294 (extrapolated)				
1999					
1995					

SOME IMPLICATIONS ABOUT CONTEXT

School and home resources

- Higher levels of resources are linked to better educational outcomes
- Learning is more difficult in learning environments where discipline, absenteeism, safety/fear of injury or loss of personal property is a problem
- In EC, MP, NC, NW all learners attended schools with discipline and safety problems. Three in every four learners (75%) in SA experience bullying weekly/monthly - the international figure is 41% of learners

Curriculum

- Curriculum stability for the ten-year period
- Schools / teachers should know and adhere to national curriculum - curriculum challenges continue
- Curriculum coverage and learner achievement do ngf necessarily overlap

Changes in Curriculum landscape

Curriculum	Years	Reasons	Duration	
Interim syllabus	$\begin{aligned} & 1995- \\ & 1997 \end{aligned}$	Changing from Apartheid system to the democratic system	2 years	
$\begin{aligned} & \text { Curriculum } \\ & 2005 \end{aligned}$	$\begin{aligned} & 1998 \\ & 2001 \end{aligned}$	Skewed curriculum, lack of human resources for implementation, curriculum and assessment policy not aligned policy overload, no classroom transferability, inadequate teacher training, and inequitable quality of materials.	3 years	
Revised National Curriculum Statement	$\begin{aligned} & 2002 \\ & 2011 \end{aligned}$	Lack of a plan for implementation, an overabundance of policies, guidelines and interpretations of policies and guidelines at all levels of the education system, and unclear role of subject advisor.	9 years	
Curriculum Assessment Policy Statement	2012		\rightarrow	

Curriculum coverage in percentages

	IEA TCMA intended	SA Intended	SA reported implemented
Mathematics	100	94	72
Science	100	90	62

SOME IMPLICATIONS ABOUT CONTEXT

Teachers

- Findings indicative rather than representative of SA teachers; learners remain the unit of analysis
- South African TIMSS 2011 teachers are: older, experienced, well qualified, well prepared, confident, satisfied
- Audit of teacher qualifications: at national level, or for representative sample
- Emphasise combination of subject \& subj. pedagogy/didactics training

Importance of language for achievement

- Learners move from "learning to read" to "reading to learn"
- Text-rich, language-dependent background and activity enhance conceptual, cognitive and academic proficiency among learners
- See next few slides

Context and learner achievement

Factor affecting lo-hi score differences in the next column

For Maths

I. Demographic and structural conditions

Home and instructional/test language equivalence	80
Perceived learner difficulty understanding spoken school lang.	65
Female \& male parent/caregiver qualification level	85 \& 90
II. Access to language opportunities and support	
Schools sending extra learning materials home	37
Exposure to writing through homework (frequency ; volume) (3+ times per week; 16-30 to 31-60 minutes in volume)	$\begin{aligned} & 35 \text { (teachers) } \\ & 40 \text { (learners) } \end{aligned}$
Frequency of speaking the test language at home	84
Number of books at home	46
III. Resource constraints and limitation	
Effect of textbook/learning material shortages on instruction	107
Resources: - software use in class - computers, Internet, TV, dictionaries* at home	$\begin{gathered} 40 \\ 46 \text { (39*) } \end{gathered}$

... Language vulnerability of Science

| Factor affecting lo-hi score differences in the next column/s | Maths | Science |
| :--- | :---: | :---: | :---: |
| I. Demographic and structural conditions | | |
| Home and instructional/test language equivalence | $\mathbf{8 0}$ | $\underline{\mathbf{1 2 0}}$ |
| Perceived learner difficulty understanding spoken school lang. | $\mathbf{6 5}$ | $\mathbf{6 5}$ |
| Female \& male parent/caregiver qualification level | $\mathbf{8 5 ~ \& ~ 9 0}$ | $\underline{\mathbf{1 1 8 ~ \& ~ 1 2 2 ~}}$ |

II. Access to language opportunities and support

Schools sending extra learning materials home	$\mathbf{3 7}$	45
Exposure to writing through homework (frequency ; volume) $(3+$ times per week; 16-30 to 31-60 minutes in volume)	35 (teachers) 40 (learners)	Erratic
Frequency of speaking the test language at home	$\mathbf{8 4}$	$\mathbf{1 4 1}$
Number of books at home	$\mathbf{4 6}$	$\mathbf{6 1}$

III. Resource constraints and limitations

Effect of textbook/learning material shortages on instruction	107	$\underline{135}$
Resources: - software use in class - computers, Internet, TV\#, dictionaries* at home	46 (39*)	66 (76\#)

Home / test language equivalence

HA
TIMSS
equivalent

Science and speaking Test Lang. at home

Only 25% of learners always or almost always speak test language at home

Synthesis and implications

- Many language-linked learning conditions have improved
- The school system has to ensure that as many as possible learners' home and test languages are the same; else learners' proficiency in the language of learning and teaching (testing) should be increased
- The latter will benefit from greater exposure of learners to reading and writing of extended text, and to speaking the language of instruction at home, especially with a view to increasingly language-dependent contents/subjects
- Strong efforts are required to overcome constraints associated with language-based resources

Concluding remarks

- At broadest level - school functionality is key
- Teachers - improve relevance and completeness of teacher qualifications in both the subject and its didactics
- Curriculum - enhance coverage (as delivered), especially pertaining to core, foundational concepts
- Resources - expand appropriateness and saturation
- Language - improve overlap (and mastery) of home and instructional languages, especially earlier in the system
- Increase accountability forces by communicating the individual learner and school achievement results widely to parents and the community

