

INCIDENCE OF BACTERIAL COLONISATION IN HOSPITALISED PATIENTS WITH DRUG-RESISTANT TUBERCULOSIS

R Gaida^{1,2}, J Black¹, S Govender³, D Annear³ and I Truter^{4,5}

- ¹Research Associate, Drug Utilisation Research Unit, Nelson Mandela University
- ²Human Sciences Research Council, Post-doctoral fellow
- ³Department of Microbiology, Nelson Mandela University
- ⁴Drug Utilisation Research Unit, Nelson Mandela University
- ⁵Department of Pharmacy, Nelson Mandela University

BACKGROUND

- Hospital acquired infections (HAIs) cornerstone
- of Infection Control Programmes
- Neglected and under-practiced in South Africa¹
- Tuberculosis (TB) burden in South Africa ~ 295 000 new notified cases in 2015, 10 000 of these being multidrug resistant and rifampicin-resistant cases²
- Lack of literature concerning nosocomial infections in
- TB hospital settings

http://zululandobserver.co.za/103679/tb-awareness comes-under-the-spotlight-this-month/

- 1. Lowman, W. 2016. Active surveillance of hospital-acquired infections in South Africa: implementation, impact and challenges. *South African Medical Journal*, 106(5).
- 2. World Health Organisation. 2016. Global TB Report: Annex 2 Country Profiles. Available at http://www.who.int/tb/publications/global_report/gtbr2016_annex2.pdf?ua=1 [Date accessed: 06/08/2017].

BACKGROUND

Extended spectrum beta-lactamase (ESBL) producing bacteria
Carbapenem resistance on the increase^{1,2,3}
Vancomycin-resistant enterococci (VRE)⁴

- 1. Bamford, C., Badenhorst, L., Duse, A.G., Hoosen, A.A., Nchabeleng, M., Oliver, S., Perovic, O., Sein, P.P., Simpson, J., Wadula, J. and Wasserman, E. 2007. Antimicrobial susceptibility patterns of selected invasive pathogens from public sector hospitals in South Africa, 2007. *South African Journal of Epidemiology and Infection*, 24(2): 28-30.
- 2. Ehlers, M.M., Veldsman, C., Makgotlho, E.P., Dove, M.G., Hoosen, A.A. and Kock, M.M. 2009. Detection of bla_{SHV} , bla_{TEM} , and bla_{CTX-M} antibiotic resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital. *FEMS Immunology and Medical Microbiology*, 56(3): 191-196.
- 3. Usha, G., Chunderika, M., Prashini, M., Willem, S.A. and Yusuf, E.S. 2008. Characterization of extended-spectrum β-lactamases in *Salmonella* spp. At a tertiary hospital in Durban, South Africa. *Diagnostic Microbiology and Infectious Disease*, 62(1): 86-91.
- 4. Mahabeer, Y., Lowman, W., Govind, C.N., Swe-swe-han, K. and Mlisana, K.P. 2016. First outbreak of vancomycin-resistant Enterococcus in a haematology unit in Durban, South Africa. *Southern African Journal of Infectious Diseases*, 31(1): 20-24.

AIM

To determine the spectrum of bacterial colonisation in drugresistant TB patients upon admission and during hospitalisation

METHODOLOGY

Matched 1:3–
each patient
transferred from
an acute facility
matched with
three patients
from the
community

Specialised drug resistant TB hospital

Prospective, case control study

Data collection

Demographic information, recent medical care, antibiotic or invasive device exposure over the last month collected at baseline

Nasal, groin and rectal swabs – at admission and every four weeks during hospitalisation

Samples stored at 4°C until transported to the National Health Laboratory Service

Identification and antimicrobial susceptibility testing of isolates using culture and VITEK-MS system (National Health Laboratory Service)

PCR and DNA sequencing for detection carbapenem resistant genes

janssen

Microsoft Excel®

METHODOLOGY

Ethics

Nelson Mandela Metropolitan University Research Ethics Committee (Human) – H15-HEA-PHA-017 Eastern Cape Department of Health – EC_2016RP1_50 Declaration of Helsinki¹

1. World Medical Association. 2013. Declaration of Helsinki: ethical principles for medical research involving human subjects: 1-8.

RESULTS

G)

37 patients – nine transfers and 28 community admissions Female patients – 78.37% (n=29) Average age of population - 35.08±9.62 years

13 patients colonised upon admission

44% - other institutions (4/9)

PATIENT SPECIFICS

ANTIBIOTICS PRESCRIBED DURING HOSPITALISATION

Percentage of patients prescribed antimicrobial

ESBL PRODUCING BACTERIAL ISOLATES

BACTERIAL ISOLATES

- The high number of K. pneumoniae isolates are of concern
- Carbapenemase producing genes not detected in isolates with reduced carbapenem susceptibility (*Proteus mirabilis* and *K pneumoniae*)
- No VRE isolated, while two patients had methicillin resistant Staphylococcus aureus colonisation at admission
- Seven participants died during the course of the study none were attributed to nosocomial infection

ANTIMICROBIAL SUSCEPTIBILITIES

		MIC RANGE (mg/L)	PERCENTAGE RESISTANCE		
ANT	ANTIMICROBIAL		BASELINE ISOLATES (n=13)	HOSPITAL-ACQUIRED ISOLATES	
				(n=49)	
PENICILLINS/CEPHALOSPORINS					
	AMPICILLIN	16 - ≥32	100	100	
	AMOXICILLIN	16 - ≥32	76.9	77.6	
	PIPERACILLIN/TAZOBACTAM	64 - ≥128	23.1	57.1	
	CEFUROXIME	≥64	100	100	
	CEFUROXIME AXETIL	≥64	100	100	
	CEFOXITINE	16 - ≥32	76.9	77.6	
	CEFOTAXIME	2 - ≥64	100	100	
	CEFTAZIDIME	16 - ≥32	100	100	
	CEFEPIME	16 - ≥32	92.3	100	
CARBAPENEMS					
	ERTAPENEM	1 - >32	7.7	0	
	IMPIPENEM	8 - 32	0	0	
	MEROPENEM	16 - 32	7.7	0	
AMINOGLYCOSIDES					
	AMIKACIN	32 - ≥64	53.9	77.6	
	GENTAMYCIN	8 - ≥16	46.2	69.4	
FLUOROQUINOLONES					
	CIPROFLOXACIN	2 - ≥4	100	100	
OTHER					
	TIGECYCLINE	≥8	23.1	22.4	,
	NITROFURANTOIN	≥512	53.9	22.4	
	COLISTIN	≥16	7.7	0	
S	SULPHAMETHOXAZOLE/TRIMETHOPRIM	≥320	92.3	100	

CONCLUSION

- Insight into the spectrum of bacterial pathogen colonisation
- Prior exposure to healthcare facilities put patients at higher risk of being colonised
- Enterobacteriaceae were the most prevalent nosocomial pathogens colonising TB patients
- Prolonged admission drug resistant-TB patients at higher risk of colonisation with other drug-resistant pathogens
- Guidance for Antibiotic Stewardship and Infection Control Programmes

ACKNOWLEDGEMENTS

Funder: Inter-professional Research Unit – Nelson Mandela University

My co-authors

- John Black
- Sharlene Govender
- Dale Annear
- Ilse Truter

Janssen and NDoH

Thank you

