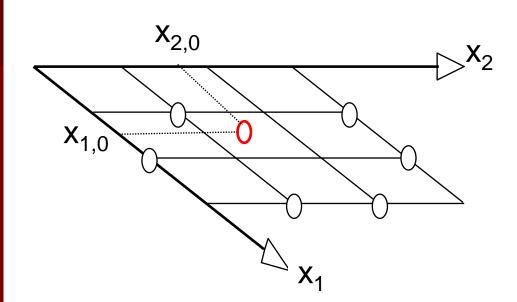
Credibility Distributional Grade Geostatistics for Spatial Inequalities

Presentation: IBS Conference, Brazil 5th – 10th December 2010

Introduction

- Context
- Fuzzy Spatial Data
- Credibility Measure Theory // Probability Measure Theory
- Credibility Geostatistics
- Conclusion

Spatial Estimation Problem ????



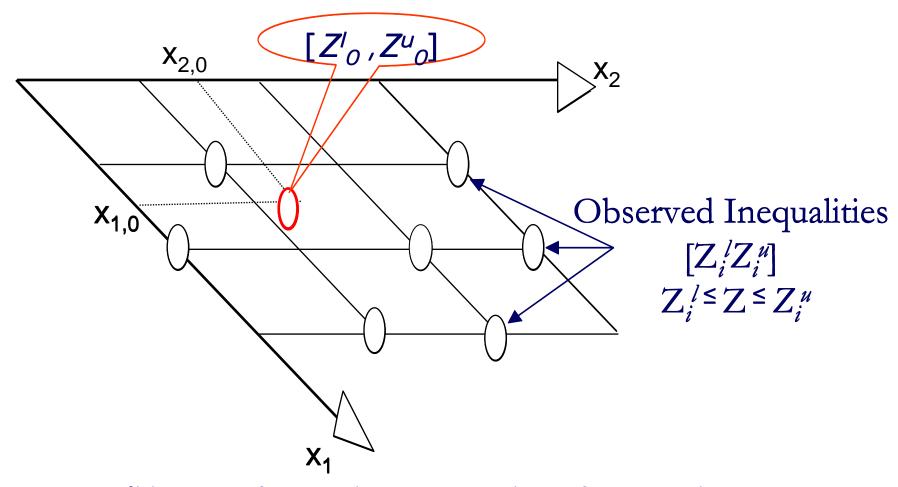
■ What is the dependency between observed values?

How to estimate at intermediate unknown spatial coordinates?

Goal:

- □ Generate information with spatial continuity, using samples at selected locations
 - Pollution prediction maps, crucial for decision-making.
 - Early warnings on increase of gamma dose levels above certain thresholds.

Imprecise Spatial Point Data



- Inequalities are the Basic presentation of uncertainty
- Captures randomness and fuzziness in real life measurements
- Other presentation of imprecise spatial point data: pdf, fuzzy sets

Modeling With Spatial Inequalities

- Use précis number (mean, median, quartiles)-loose information
- Interval Analysis –lacks gradation (Diamond, 1988)

Better Approach

- Interval or Inequality can be view as a fuzzy set
- Apply the basic concept of fuzzy mathematics (Kaufmann, 1975; Zadeh, 1965, 1978).
- Set-based operations and set-based outputs- Mathematics complex

???? simpler approach

Basics

Probability theory: Random variable
 Probability measure (self-duality property)
 Probability distribution function
 Real-valued operations /Outputs

Fuzzy methods theory: (Random) fuzzy events, fuzzy random events
 Possibility measure (no self-duality property)
 Membership function
 Set-based operations/ set-based outputs

Fuzzy Geostatistics

- Fuzzy set operations,
- Apply Membership function (subjective);
- Set-based predictions; Difficult with GIS

Our Approach- Two steps

Random interval set

Fuzzy (variable) === set

Scalar Fuzzy variable

Closed Random Interval Theory

Membership function Possibility Measure (Lacks self duality) Credibility Distribution
Credibility Measure
(Self Duality)

Interval Arithmetics

Fuzzy set Mathematics Real-valued Mathematics

Credibility Measure Theory

Let Θ denote a nonempty set, with corresponding power set 2^{Θ} .

We refer to the elements $B \in 2^{\Theta}$ as events. In addition, let Cr(B) denote a number assigned to event B such that $0 \leq Cr(B) \leq 1$. The number Cr(B) indicates the credibility that the event B occurs. Cr(B) satisfies the following axioms Liu (2006):

Axiom 1. $Cr(\Theta) = 1$

Axiom 2. $Cr(\cdot)$ is non-decreasing, i.e. $Cr(B) \leq Cr(C)$ for $B \subseteq C$, $C \in 2^{\Theta}$.

Axiom 3. $Cr(\cdot)$ is self-dual, i.e. $Cr(B) + Cr(B^c) = 1$ for $B \in 2^{\Theta}$.

Axiom 4. $\operatorname{Cr}\{\bigcup_i B_i\} \wedge 0.5 = \sup \left[\operatorname{Cr}\{B_i\}\right] \text{ for any } \{B_i\} \text{ with } \operatorname{Cr}(B_i) \leq 0.5$

Axiom 5. Assume that a given set of functions $\operatorname{Cr}_k(\cdot): 2^{\Theta_k} \to [0,1]$ satisfy Axioms 1-4, and $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_q$, then for each $(\theta_1, \theta_2, \dots, \theta_q) \in \Theta$

$$\operatorname{Cr}(\theta_1, \theta_2, \dots, \theta_q) = \operatorname{Cr}_1\{\theta_1\} \wedge \operatorname{Cr}_2\{\theta_2\} \wedge \dots \wedge \operatorname{Cr}_q\{\theta_q\}$$

Credibility Measure Space

Any set function $Cr: 2^{\Theta} \to [0,1]$ satisfying Axioms 1-4 is called a (\land,\lor) -Credibility measure, and the triplet $(\Theta,2^{\Theta},Cr)$ is referred to as the (\land,\lor) -Credibility Measure Space

A fuzzy variable, ξ , is a mapping from the credibility space $(\Theta, 2^{\Theta}, Cr)$ to a set of real numbers

Credibility Distribution of Fuzzy variable ξ

The credibility distribution $\Phi: \mathfrak{R} \to [0,1]$ of the fuzzy variable ξ on $(\Theta,2^{\Theta},Cr)$ is: $\Phi_{\xi}(z) = Cr\{\theta \in \Theta: \xi(\theta) \leq z\}$

Represents cumulated credibility grade of the fuzzy variable, ξ , taking values less or equal to $z \in \mathcal{R}$ Parallel to a random variable, a fuzzy variable is fully described by its credibility distribution function

....continued

The induced membership function of the fuzzy variable ξ on $(\Theta, 2^{\circ}, Cr)$ is $\mu_{\varepsilon}(z) = (2Cr\{\xi = z\})\Lambda 1, z \in \Re$

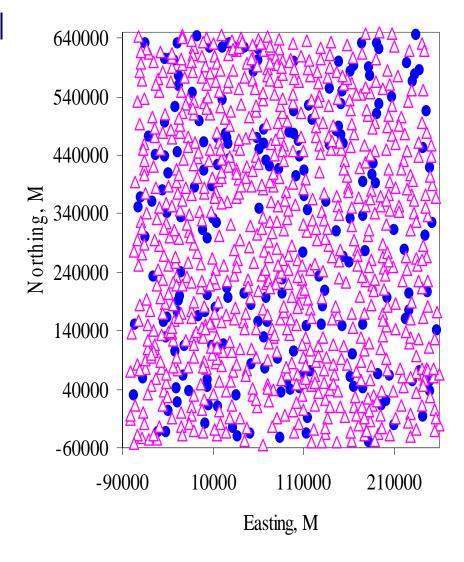
Fuzzy set/credibility measure theory

- ☐ Membership function: not correct starting point set-theoretical foundation of the fuzzy mathematics
- Proposed possibility measure, assumed counterpart of probability measure, lacks self-duality
- Axioms of credibility measure provides a set-theoretical foundation for fuzzy variables
- ☐ Fuzzy variable should be characterized by its credibility distribution first.
- As a tradition, we provide fuzzy variable membership function; an *induced* function, conventional and convenient mathematical language for describing the fuzzy phenomenon.

An Example:

- Mean gamma dose rates of natural ambient radioactivity in Germany (inequalities)
- Total of 1008 monitoring stations
- Spatial inequalities at 200 monitoring stations. (Blue)

$$\{(z_i^l, z_i^u), i = 1, 2, \dots, n\}$$



Induced Maximum entropy fuzzy Variable

$$\mu_{\xi(\lceil z',z''\rceil)}(Z) = \int_{-\infty}^{z} \int_{z}^{\infty} p(Z',Z'') dZ'' dZ'$$

Maximum entropy data-assimilated credibility distribution function

$$\Phi_{\xi}(z) = \frac{1}{2} \left(\mu_{\xi([z',z''])}(z) + 1 - \sup_{y \neq z} \left[\mu_{\xi([z',z''])}(y) \right] \right)$$

Credibility spatial random function

For a given fuzzy variable ξ with credibility distribution Φ_{ξ} , if $\xi = z_i$ at location $\mathbf{x}_i = (x_i, y_i)$, then $\Phi_{\xi}(z_i)$ is called the credibility grade for fuzzy variable ξ at location (x_i, y_i) . The collection of spatially distributed credibility grades, denoted as $\{\Phi_{\xi}(z_i), \mathbf{x}_i \in D \subset \mathbb{R}^2, i = 1, 2, \cdots, n\}$, is called sampled credibility grades over re-gion D. The credibility grades range from 0 to 1 and forms an alternative generalization to 0/1 indicator codes as used in indicator kriging

Credibility grade geostatistics

Sample Credibility grade Semivariogram

$$\hat{\gamma}_{\Phi}(h) = \frac{1}{2n(h)} \sum_{i=1}^{n(h)} \left[\left(\Phi\left(z(\boldsymbol{x}_i + h) \right) - \Phi\left(z(\boldsymbol{x}_i) \right) \right)^2 \right]$$

Credibility grade kriging system

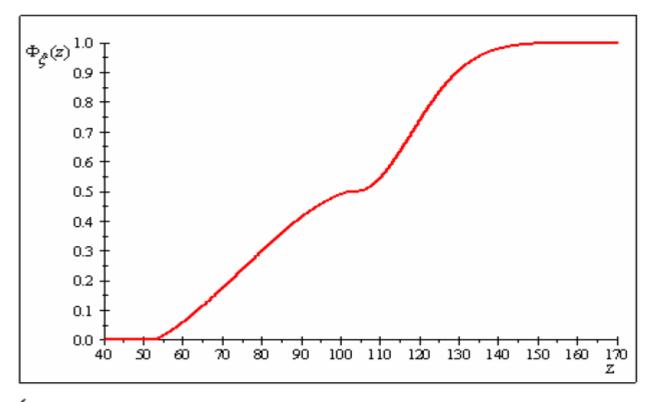
$$\sum_{j=1}^{n(h)} \lambda_j \gamma_{\Phi} (\boldsymbol{x}_i - \boldsymbol{x}_j) + \psi = \gamma_{\Phi} (\boldsymbol{x}_0 - \boldsymbol{x}_i) \quad i = 1, \dots, n(h)$$

$$\sum_{j=1}^{n(h)} \lambda_j = 1$$

Credibility grade predictor

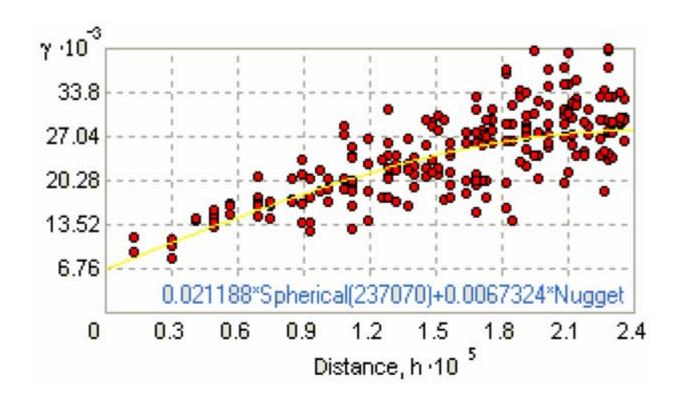
$$\hat{\Phi}(z(\boldsymbol{x}_0)) = \sum_{i=1}^{n(h)} \lambda_i \Phi(z(\boldsymbol{x}_i)), \quad \sum_{i=1}^{n(h)} \lambda_i = 1$$

Credibility distribution



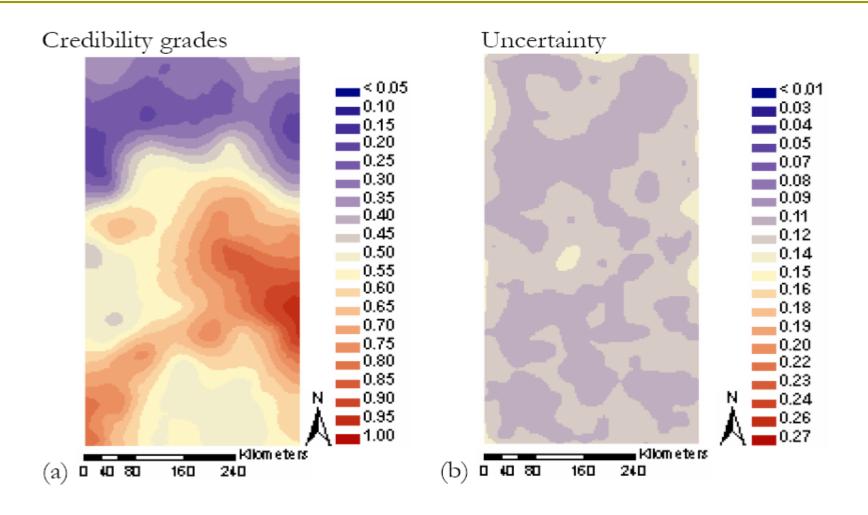
$$\Phi_{\xi}(z) = \begin{cases} 0 & \text{if } z < 52.795 \\ \frac{1}{2} (1.9517 - 0.1097z + 0.0018z^2 - 0.000008z^3) & \text{if } z \in [52.795, 102.186) \\ \frac{1}{2} & \text{if } z \in [102.186, 103.780] \\ 1 - 0.50016 \exp\left(-\frac{(z - 103.73288)^2}{408.89}\right) & \text{if } z \in (103.780, 157.000] \\ 1 & \text{if } z > 157.000 \end{cases}$$

Credibility grade variogram



Increases slowly from the origin; an indication of smooth imprecise random process

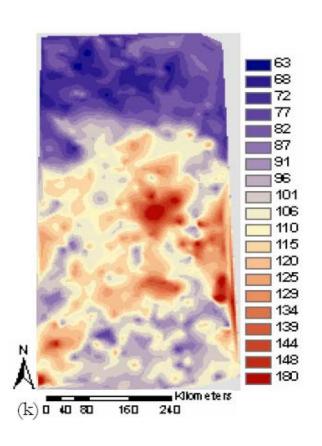
Pollution map and Error Map

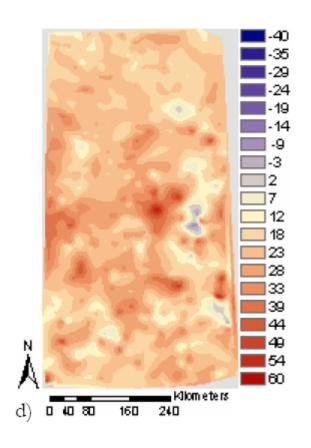


ME = 0.0003;

RMSE=0.1145

Ordinary kriging of central values





ME = -0.13; RMSE = 11.97

QUESTIONS